
A note on calculation of the potential from scattering phase shifts

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1984 J. Phys. A: Math. Gen. 17 2767

(http://iopscience.iop.org/0305-4470/17/14/020)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 07:46

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/17/14
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys. A: Math. Gen. 17 (1984) 2767-2771. Printed in Great Britain 
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Abstract. An improvement is suggested for calculating the potential from scattering phase 
shifts using the general equations of inverse scattering theory. It is shown that all the 
necessary coefficients which eventually determine the potential can in principle be obtained 
from a lesser number of significant phase shifts. The resulting improvement in practical 
calculation is shown by examples. 

1. Introduction 

Newton (1962) first developed a theory for determining the potential from a knowledge 
of phase shifts at a given energy. Since then, this inverse scattering problem at fixed 
energy has been studied extensively (Newton 1966, Chadan and Sabatier 1977). 
Sabatier and Quyen Van Phu (1971) gave a numerical method for the calculation of 
the potential. Quite a number of numerical tests have also been performed. Sabatier's 
procedure was improved upon by Coudray (1977) and was applied to the case of 
complex optical potentials as well. Munchow and Scheid (1980) have recently sug- 
gested a modified form of the Newton-Sabatier method. This has the advantage that 
the information given by the phases is fully and optimally used to reproduce the 
potential. Usually the number of coefficients b, which go to determine this potential 
is the same as the number of partial waves included in the initial data. In this report 
we show how to calculate all the coefficients, b,, from the smaller number of known 
significant phase shifts. By including more coefficients a better approximation to the 
original potential can be obtained. The deduction of relevant equations for the higher 
coefficients is straightforward and no further assumptions appear to be necessary. 
However, in practice, the largest number of coefficients that can be reliably calculated 
numerically depends on the capacity of the computer to invert the required matrices. 

2. Conventional method 

In a rationalised form the radial Schrodinger equation can be expressed as 

D ( P ) h ( P )  = [(I + 1)ddP) 

D(P) = P2[d2/dP2 + 1 - U(P)l, 
p = ( 2 i . ~ E / h ~ ) " ~ r  = kr, 

(1 )  
where 

4 , ( P )  = r&(r) ,  

U(P) = V ( r ) / E .  
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Let 4 j o ) ( p )  be the wavefunction when the potential is zero. The Schrodinger equation 

p2[dZ/dp2 + 1 ] 4 ! ” ( p )  = 1(1+ 1)4:O)(p) 

4 ! O ’ ( P )  = FdP) = Pj , (P) .  

(2) 

has the regular solutions 

( 3 )  

In the presence of the unknown potential U, the large distance behaviour of ( I )  
determines the phase shifts. Let R be the range of this potential and k the centre of 
mass momentum, so that po = kR is the effective distance over which the potential has 
appreciable effect. For distances p >> po the wavefunction is 

4 r ( p )  = AITI(P) = A I [ C O ~  WI(P)  +sin & G I ( P ) ~ .  (4) 

F , ( p )  and G , ( p )  are the regular and irregular solutions of (2). The coefficients A, are 
the unknown quantites to be determined. 

For solving inverse scattering problems Newton (1962) has defined a kernel 

which turns out to be the solution of the Gel’fand-Levitan linear integral equation 

K(P,  P ’ )  = d p ,  P ’ )  - dp” P ” - ~ K ( P ,  p ” ) g ( p ” ,  P ’ )  (6) Jop 
where 

This integral equation is uniquely satisfied by defining the potential as 

V(P) = -(2/p)(d/dP)(p-’WP, P I ) .  (8) 

The Schrodinger wavefunctions then satisfy the integral equation 

4 d P )  = 4lYd - lo’ dP’ P’-2K(P, P ’ ) d O ) ( P ’ ) .  (9) 

Substituting (5) in the above equation we get a coupled system of equations, namely 

where the matrix LI,, is 

Equivalently (10) can be written as 

where we have abbreviated bl = C,A,. Knowing the coefficients from equations ( 1  I ) ,  
the kernel K(p,  p )  and the potential are obtained from (5) and (8) respectively. 
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In potential problems the number of significant phase shifts is roughly L -  kR. 
Normally the phase shifts become negligibly small at a partial wave somewhat higher 
than L. In earlier work, Munchow and Scheid (1980) limited the 1' summation in ( 1  1 )  
to L. But several values of p were used, which actually overdetermines the solutions. 
The solutions are then optimised by a standard procedure (Pipes and Harvill 1970). 
The resulting M becomes a matrix of dimensionality 2(L+ 1)  columns and N ( L +  1 )  
rows. The coefficients ( { A , .  . .}, {b ,  . . ,}) are determined from the relation 

X = ( { A , .  . .}, { b , . .  .}) = ( M ' M ) - ' M + F ,  

where M' is the Hermitian adjoint matrix of M and F is a vector with N ( L  + 1 )  
components where N is the number of p's and L is the number of partial waves. 

However, the total number of coefficients Cl is only L. As a result the series for 
K ( p ,  p )  of (5) is truncated at this point. Unfortunately the coefficients C L + I ,  C L + 2 .  . . 
are not small, even for a case where the reference potential is zero. This has been 
demonstrated by Sabatier (1966). As the higher coefficients are not zero, truncation 
of the series for K ( p ,  p )  will not lead to a correct U. In § 3 we suggest how we can 
find the Cl's larger than I > L. The total number of coefficients will increase the number 
of terms in the series and the potential is more likely to reproduce the actual one and 
the correction AU to U will be considerably reduced. 

3. Determination of higher coefficients 

In this section we demonstrate how the higher Al's and bl's can also be calculated from the 
lower coefficients using the general theory. For simplicity let us write down ( 1  1 )  only for 
two radial distances pl and p2. Then one can eliminate A, from the two equations and get 
the simpler form 

T 

I oc 

The important observation we make is that from (14) the coefficients for 1 > L, bk can 
be obtained in terms of the coefficients for 1 s L, from 
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Then from (13) with the help of (14) we easily have 

where 

HI/,= M l / ~ - ~  M[k(M-')kk'Mk'/' .  (17) 
k k' 

In (15)-( 17), (M- ' )kk<  stands for the ( k ,  k ' )  element of the inverse of the matrix M, 
only in the subspace generated by the indices k and k', which are greater than L, but 
not that ofthe inverse ofthe whole matrix M ofdimensionality (L,,, + 1). The coefficients 
from known phase shifts b,, IC L are calculated from (16) by inverting the matrix of 
dimensionality ( L  + 1)  x ( L  + I ) .  The higher coefficients bk,k > L are then computed from 
(15) in terms of lower coefficients bl by inversion of a matrix of dimensionality 

The upper limit L of the general method can thus be effectively pushed to larger 
values of L till L,,,, depending on the limitation of the computer. The equation for 
d r ( p )  takes the form 

( L m a x  - L )  x ( L m a x  - L ) .  

0.21 
i 

1 

-0.61 I I 

Figure 1. Calculation of potential with differing num- Figure2. Calculation of potential with differing num- 
ber of coefficients b,; curves A, B, C, D represent ber of coefficients b,; curves A, B, C represent the 
the potential obtained by including I O ,  14, IS,  16 potential obtained by including IO, 14, 15 coefficients 
coefficients respectively, at laboratory energy respectively at laboratory energy 75 MeV. The 
55 MeV. p o  = 6.54; Un = -0.31. original square well potential is shown in the figures. 

~ 0 ~ 7 . 5 9 ;  U = -0.2336. 
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and for 1 > L 

MP)  = A l A p ) .  (18) 

Knowing all the wavefunctions dr, the unknown potential is then calculated from ( 5 )  
and (8). 

4. Examples 

To illustrate the improvement we choose a square well potential of depth -14 MeV 
with a range of five fermi, at laboratory energies 55 MeV and 75 MeV. In both cases 
the number of significant phase shifts is around ten. 

From figures 1 and 2 it is easily seen that the reproduced potentials oscillate violently 
and are quite away from the expected square well. As soon as we include more than 
ten coefficients the oscillations stabilise around the square well. The numbers of 
additional coefficients are only four, five and six (due to the limitation of our existing 
computer IBM 1130). Significant improvement can easily be noticed. Thus we are 
convinced that such additional coefficients are needed for the determination of a more 
accurate potential without much addition of computer time. 
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